Safety and Security Analysis Using STPA

Jingyue Li Associate Professor Department of Computer Science Norwegian University of Science and Technology

Outline

- Why STAMP and STPA?
- STPA for safety analysis
- STPA for security analysis
- STPA agile and cost effectiveness
- Summary

Most safety analysis tools are all 40-60 years old. Our technology is very different today

Traditional accident causation model: accidents as chains of failure events

Heinrich Domino Theory (1930) (Teori Domino)

The "accidents as chains of failure events" model

- Safety analysis
 - FTA, FMEA/FMECA, Event Tree, HZAOP, etc.
- Safety design (concentrates on component failure)
 - High component integrity
 - Redundancy and overdesign
 - Barriers (to prevent failure propagation)
 - Fail-safe design
 - Operational procedures

— ...

Traditional approaches do not handle well component interaction accidents

- Component interaction accidents
 - No component stops working
 - Design is wrong
 - Components (and humans) do not fit together
 - Especially for indirect and non-linear interactions
 - Social-technical aspects

Multiple controller problem

- Conflicting control actions
- Overriding between commands
 - An unsafe command overrides a safe one
- "Someone else has done (will do)"
 - Each controller thinks the other has done (will do) and nobody does
- Etc...

An example of wrong interaction

- One pilot executed a planned test by aiming at aircraft in front and firing a dummy missile.
- Nobody involved knew that the software was designed to substitute a different missile if the one that was commanded to be fired was not in a good position.
- In this case, there was an antenna between the dummy missile and the target so the software decided to fire a live missile located in a different (better) position instead.
- Accident: a live missile was fired instead of the dummy missile!

STAMP (Systems-Theoretic Accident Model and Processes): A new accident causation model

- STAMP expands the traditional accident causation model
 - Accidents are more than a chain of directly related failure events
 - Accidents involve more complex dynamic processes
 - Safety can only be treated adequately in their entirety (all social and technical aspects)
- Treat accident as a control problem, not just a failure problem

"Enforce safety constraints (e.g. Two aircrafts must not violate minimum separation)"

STAMP is a new accident causality model

Applications

Methods

Outline

- Why STAMP and STPA?
- STPA for safety analysis
- STPA for security analysis
- STPA agile and cost effectiveness
- Summary

STPA has three key concepts

- Safety constraint
- The hierarchical control structure
- Process models

STPA applied in train door control system – operation control structure

STPA steps

(UCA) and the causal factors.

STPA applied in train door control system – operation control structure

NTNU

STPA applied in train door control system – how to identify UCA?

STPA evaluates each <u>Control action</u> for all combinations of <u>Process Model</u> <u>Variable States</u>.

Under each combination of process model variable state, STPA will evaluate if any of the following four scenarios will be safe or unsafe.

- 1) A control action required is not provided
- 2) A control action is provided
- 3) A control action is provided tool late, too early, or out of sequence
- 4) A control action is stopped too soon or applied too long

STPA applied in train door control system – identify if a certain CA is hazardous

Cont	roller	Door cont	rol system	H1	Door opens when the train is in motion		tion
Control Action		Open	Open door		Door opens while not aligned with station platform		
			Open door		Door cannot be opened for emergency evacuation		
				H4	Door closes while someone is in the doorway		
	Р	rocess Model Va	ariables		Control Act	ions (CA) hazardous?	
	Train	Emergency	Train position	CA NOT	СА	CA provided too	CA stopped too
	motion	(Yes/No)	(Aligned)	provided	provided	late/early	late/early
1	Stopped	Yes	No	H3		Too late (H3)	Too early (H3)
2	Stopped	Yes	Yes	H3		Too late (H3)	Too early (H3)
3	Stopped	No	No		H2	Too early/late (H2)	
4	Stopped	No	Yes			Too early (H2)	
ow can this happen?		Yes	No		H1, H2	Too early (H1, H2)	
6	Moving	Yes	Yes		H1	Too early (H1)	
7	Moving	No	No		H1, H2	Too early (H1, H2)	
8	Moving	No	Yes		H1,	Too early (H1)	

A classification of causal factors leading to hazards

Outline

- Why STAMP and STPA?
- STPA for safety analysis
- STPA for security analysis
- STPA agile and cost effectiveness
- Summary

STPA + STPA-Sec

Con	troller		Door cont	rol system	H1	Door opens when the train is in mot		tion
Control Action			Open door		H2	Door opens while not aligned with station platform		
					H3	Door cannot be opened for emergency evacuation		
					H4	Door closes	while someone is in the	e doorway
	Process Model Variables			Control Actions (CA) hazardous?				
	Train	Em	nergency	Train position	CA NOT	СА	CA provided too	CA stopped too
	motion	()	(es/No)	(Aligned)	provided	provided	late/early	late/early
1	Stopped		Yes	No	H3		Too late (H3)	Too early (H3)
2	Stopped		Yes	Yes	H3		Too late (H3)	Too early (H3)
3	Stopped		No	No		H2	Too early/late (H2)	
4	Stopped		No	Yes			Too early (H2)	
5	Moving		Yes	No		H1, H2	Too early (H1, H2)	
6	Moving		Yes	Yes		H1	Too early (H1)	
7	Moving		No	No		H1, H2	Too early (H1, H2)	
8	Moving		No	Yes		H1,	Too early (H1)	
9	Moving but		No	Yes		H1	Too early (H1)	
	shows							
	stopped							
10	Moving		No	False aligned		H1, H2	Too early (H1, H2)	

A classification of causal factors leading to hazards (with security)

Outline

- Why STAMP and STPA?
- STPA for safety analysis
- STPA for security analysis
- STPA agile and cost effectiveness
- Summary

Agility

- Changes of process model variables
 - Add / remove / change control components
 - Add / remove / change interfaces
- Changes of threat models

Cost effectiveness

- State explosion
- Combinatorial testing methods

Number of variables involved in triggering software faults*

Vars	Medical Devices	Browser	Server	NASA GSFC	Network Security
1	66	29	42	68	20
2	97	76	70	93	65
3	99	95	89	98	90
4	100	97	96	100	98
5		99	96		100
6		100	100		

*http://csrc.nist.gov/groups/SNS/acts/ftfi.htm

Summary

- STAMP and STPA has been applied in many domains
- STPA-Sec is developing
- Agility and cost-effectiveness will be key challenges

